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The effect of obesity on chronic 
diseases in USA: a flexible copula 
approach
Robinson Dettoni 1*, Cliff Bahamondes 1, Carlos Yevenes 1, Cristian Cespedes 2 & 
Javier Espinosa 1

We analyze the effect of obesity on the incidence of hypertension, hyperlipidemia and diabetes in 
USA using a health production theoretical framework along with a bivariate flexible semi-parametric 
recursive copula model that account for endogeneity. In this approach, the effects of control variables 
are flexibly determined using additive predictors that allow for a variety of effects. Our findings 
suggest that there exist a positive and significant effect of obesity on the prevalence of all chronic 
diseases examined. In particular, after endogeneity is accounted for, the probability of having 
hypertension, hyperlipidemia and diabetes for obese individuals are, respectively, 35%, 28% and 11% 
higher than those under the obesity threshold. These findings suggest that lowering obesity rates 
could lead to significant reductions in the morbidity and mortality associated with these diseases.

Obesity is described as a disease in which an abnormal or excessive amount of fat accumulates in the body and 
that may pose a health  risk1. This disease has grown to epidemic proportions, and it has nearly tripled since 
 19752. In fact, 13% aged 18 and over were obese in 2016. Obesity prevalence in the United States (USA) was 
38% in 2014, up from 32% in 2004. This represents a notorious growth if we consider the figures back in the 
80‘s where only 15% of the population recorded obesity according to the WHO. Nowadays obesity in USA is an 
issue for more than 40% of the population, a concerning figure if we compare other OECD countries with an 
obesity average of 20%3,4.

There are many variables that can unravel the incidence of obesity worldwide as well as in USA. In particular, 
it is generally known that genetics can explain obesity in many  cases5,6. Economic variables such as business 
cycle  expansions7,8, participation of women in the job  market9 and processed food  availability10,11 are positively 
related with obesity. There is also evidence that behavioral variables may have an impact in the occurrence of 
obesity. In this line, factors such as lifestyles, work routines, absence of physical activity, anxiety and bad eat-
ing habits have been found to be associated with obesity as  well12–15. Environmental variables may also play an 
important role when it comes to obesity. In particular, mass media influence, highly caloric traditional food, 
consumerism and the need for immediate satisfaction are fostering factors for this  epidemic16–19. Population 
density and sociodemographic variables such as age, gender, schooling and income level have also shown a 
significant association with  obesity20–31.

Regardless of whether obesity is considered as a disease or a behavioral disorder, there is a consensus that it 
represents a major risk factor for chronic diseases in which hypertension, hyperlipidemia and diabetes can be 
 found32–39. Individuals from various social strata in the United States have reported suffering from at least one 
of the chronic ailments stated, negatively impacting the country’s health system e.g.,10,11,40–51.

Obesity, which can lead to mortality and other morbidities, is responsible for a wide range of costs that gov-
ernments must bear in terms of public health around the  world52–56. In the USA for example, 61% of the costs 
of type 2 diabetes can be attributable to obesity and more than $100 billion dollar are destinated to deal with 
obesity and its effects such as cancer, gall-bladder problems, hypertension and other similar  malignities44,57–62.

However, despite strong evidence of a link between obesity and the occurrence of chronic diseases, literature 
on its causal effect is still scarce. From an economic perspective, obesity, rather of being a single input into the 
health production function, can be considered as a possibly endogenous variable impacted by other health pro-
duction variables. In addition, it seems possible to hypothesize that common unobserved factors simultaneously 
influence the propensity for obesity and the prevalence of chronic diseases.

This paper seeks to analyze the effect of obesity on the incidence of diabetes, hypertension and hyperlipidemia 
in USA using data obtained from the Medical Expenditure Panel Survey (MEPS), a health production framework 
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and a flexible bivariate semi-parametric recursive copula model that account for  endogeneity63–65. Unlike the 
traditional recursive bivariate model proposed by  Heckman66 and used, for example, by Costa-Font J.  Gil37, the 
semiparametric model is based on a copula  structure67,68 allowing for different joint distributions and margins 
(logit, probit or cloglog-functions) for obesity and a set of selected chronic diseases analyzed in this work sepa-
rately. Furthermore, in our research, the effects of continuous variables were estimated in a non-parametric form 
via spline functions. This is crucial to properly model the complex effects of variables such as education, age and 
income as they represent productivity and life-cycle factors that could affect obesity and each of the diseases 
non-linearly. If these relationships are not properly modeled then the effect of obesity on the probability of suf-
fering a chronic disease (hypertension, hyperlipidemia and diabetes) may be  biased65.

After applying the semiparametric copula model, our findings indicate that obesity has a positive and signifi-
cant effect on the prevalence of each chronic diseases examined in this research. In particular, after endogeneity 
is accounted for, the estimated sampling average treatment effect for hypertension, hyperlipidemia and diabetes 
were, respectively, 35%, 28% and 11%. These findings suggest that lowering obesity rates could lead to significant 
reductions in the morbidity and mortality associated with these diseases, resulting in cost savings for the health 
system and the country’s human capital.

The article is organized as follows. In the next section, we analyze the connection between obesity and health 
using a health production theoretical framework and the bivariate flexible semi-parametric copula model that 
controls for endogeneity is presented. In Section “Data analysis”, we estimate and analyze the effect of obesity on 
the prevalence of hypertension, hyperlipidemia and diabetes using USA data. Section “Conclusion” concludes 
the paper with a discussion.

Methodology
Health and body mass production. We study the connection between body mass and the prevalence 
of chronic diseases based on the theory of health production. Costa-Font J.  Gil37, Contoyannis and  Jones69, 
 Leibowitz70 and  Grossman71, are some of the key contributions to this field. The standard model assumes that 
people devote time and resources to the development of domestic products like health ( y2 ). If a person engages 
in sports, eats nutritious foods, and so on, this person may develop bodily fitness ( y1 ), which impacts the pro-
duction of health. Consequently, the production of an individual’s health can be represented as follows:

where the vector x2 = (I , z2) . As a result, health is defined by the individual’s fitness ( y1 ), income constraints (I), 
other health production determinants ( z2 ) and other unobserved variables ( ε2 ). For obvious reasons, improve-
ments in an individual’s fitness are expected to boost health care production, subject to the effects of other health 
production variables, whereas the effect of income determines an individual’s capacity to spend in health.

The production of individuals fitness level depends on individual’s income (I), other determinants ( z1 ) and 
other unobserved variables ( ε2 ) such as the consumption of particular items like those produced at home, which 
contribute to the optimum level of fitness. Thus, the production of individuals fitness level can be written as

where x1 = (I , z1) . As a result of (1) and (2), the empirical analysis of both health and fitness production is 
dependent on the identification of each variable’s individual effects. In this study, y2 is defined in three different 
ways, each one of them representing the presence or absence of a chronic disease, from which we study hyperten-
sion, hyperlipidemia and diabetes. These are the main causes of avoidable mortality in USA e.g.,10,33,53. In turn, 
y1 is represented by the presence or absence of obesity as a way of measuring individual fitness.

Since obesity is a potential endogenous variable influenced by other health production variables, the cor-
relation between ε1 and ε2 is not expected to be zero. More specifically, lifestyle, psychological stress, as well as 
genetic and environmental factors could influence the predisposition for obesity and the prevalence of chronic 
diseases at the same time. To deal with the endogeneity of obesity, we propose a flexible bivariate semi-parametric 
copula model, which is presented in the next section.

Semiparametric recursive bivariate copula model. There are basically two methods to deal with 
endogeneity in non-standard settings when it comes to instrument-based approaches, namely the simultaneous 
estimation and the two-stage technique. Regarding two-stage techniques, the simplest one is similar to linear 
two-stage squares and it is known as the control function  approach72,73. Although the control function method is 
straightforward and fairly universal, it has issues when the endogenous variable is not  continuous74. Simultane-
ous estimation methods are a second category of procedures that aim to create the complete joint distribution of 
the endogenous regressor and the outcome variable  Zimmer75.

The recursive semiparametric copula additive  model65 belongs to the family of simultaneous estimating 
methods, but it connects, via copula  functions67,68, the two marginal distributions, producing a closed form 
equation for the likelihood function. This model is employed in this section to evaluate the impact of a binary 
endogenous variable on a binary outcome. A general explanation of identification, parameter estimation and 
the sampling average treatment effect is also provided. However, more specific details can be found in Radice 
et al.65, Marra et al.64 and Marra et al.63.

Since the key variables under study, obesity and the prevalence of chronic diseases (hypertension, hyper-
lipidemia and diabetes), are defined as dichotomous, a latent variable approach is employed to analyse the rela-
tionship between obesity and each one of the chronic diseases separately. As already mentioned in the previous 
section, obesity is a potentially endogenous variable, i.e., unobservable variables can affect both the inclination 

(1)y2 = y2(y1, x2, ε2),

(2)y1 = y1(x1, ε1),
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to obesity and the prevalence of a chronic disease in (1). Let us define y∗1i and y∗2i as the latent variables repre-
senting, respectively, obesity and the presence of a specific chronic disease. Thus, the model can be written as

where, for j = 1, 2 , ηji(xji) represents additive predictors (which will be discussed in the next section) and εji an 
error term. As these variables are not directly observable, we have:

The joint cumulative distribution function (CDF) of the two variables is modelled using the parametric copula 
function C : (0, 1)2 → (0, 1) e.g.,63,64,67,68 as

where P(yji = 1) = P(y∗ji > 0) = 1− Fj(−ηji(xji)) , and Fj(−ηji(xji)) is the cumulative distribution function 
(CDF), which can be logit, probit or cloglog-functions. Therefore, the marginal CDFs are conditioned on covari-
ates through ηji(xji) . The association parameter θ describes the dependence between y1i and y2i after covariate 
effects at the marginal level are considered.

A key benefit of the copula approach is the simplicity with which a joint CDF can be produced by joining 
two arbitrary univariate marginal CDFs and a function C. In contrast to what is observed in traditional copula 
regression scenarios, in this work the binary variable y1 appears as an explanatory variable in F2 , thus, the copula 
has a recursive structure. With respect to y2 , y1 is endogenous due to the recursive structure if θ is statistically 
significant. The copula functions available in GJRM for practical modeling are listed in Table 176. Additionally, 
Table 1 displays the relationship between θ and Kendall’s τ-coefficient, which is a measure of nonlinear concord-
ance dependence between two random variables that lies in the customary range [− 1, 1] . The Kendall’s τ for the 
Plackett copula (“PL”) is not shown in Table 1 since it is computed numerically as no analytical expression is 
available. Thus, Kendall’s τ is naturally built to capture the strength of dependence in copulas which is nonlinear 
in general, where traditional linear association measures fail (for example, Pearson correlation detects only linear 
dependence and it is not invariant to transformation of the marginal distributions)67,77.

Consider drawing two random pairs (U1, V1) and (U2, V2) from the joint distribution of U and V. Then the 
Kendall’s τ-coefficient is defined as

Althought, Spearman’s rho is perhaps more popular within uncensored data due to its simplicity of its rank-
based definition, Kendall’s tau usually gives the mathematically simpler derivation from a copula than Spearman’s 
rho, and has the clinical interpretation similar to the concordance  index78,79. In addition, Kendall’s τ is invariant 
to any monotonically increasing nonlinear transformations of the marginal distributions U and V77.

The identification of the recursive copula model is the one obtained  in80. In particular, two conditions need to 
be met. The copula function must exhibit first-order stochastic dominance with respect to θ in order to meet the 
first requirement. The presence of an instrument that influences the endogenous variable but not the outcome 

(3)y∗1i = η1i(x1i)+ ε1i

(4)y∗2i = γ y1i + η2i(x2i)+ ε2i

(5)yji =

{
1, if y∗ji > 0

0, otherwise.

(6)P(y1i = 1, y2i = 1) = Cθ (P(y1i = 1),P(y2i = 1)).

(7)τ = P[(U1 − U2)(V1 − V2) > 0] − P[(U1 − U2)(V1 − V2) < 0].

Table 1.  Definition of the copulae implemented in GJRM, with corresponding parameter range of association 
parameter θ and relation between Kendall’s τ (which takes values in the customary range [− 1, 1] ) and θ
. �2(·, ·; θ) denotes the cumulative distribution function (cdf) of a standard bivariate normal distribution 
with correlation coefficient θ , and �(·) the cdf of a univariate standard normal distribution. t2,ζ (·, ·; ζ , θ) 
indicates the cdf of a standard bivariate Student-t distribution with correlation θ and fixed ζ ∈ (2,∞) 
degrees of freedom, and tζ (·) denotes the cdf of a univariate Student-t distribution with ζ degrees of freedom. 
D1(θ) =

1
θ

∫ θ

0
t

exp(t)−1dt is the Debye function and quantities Q and R are given by 1+ (θ − 1)(p1 + p2) and 
Q2 − 4θ(θ − 1)p1p2 , respectively. The Kendall’s τ for “PL” is computed numerically as no analytical expression 
is available. Argument BivD of gjrm() in GJRM allows the user to employ the desired copula function and 
can be set to any of the values within brackets next to the copula names in the first column; for example, BivD 
= “N”. More details of the copula functions used in this research can be found, for example, in Marra et al.64 
and  Nelsen67.

Copula Cθ (p1, p2) Range of θ Kendall’s τ

AMH (“AMH”) p1p2
1−θ(1−p1)(1−p2)

θ ∈ [− 1, 1] − 2
3θ2

{
θ + (1− θ)2 log(1− θ)

}
+ 1

FGM (“FGM”) p1p2
{
1+ θ(1− p1)(1− p2)

}
θ ∈ [− 1, 1] 2

9 θ

Plackett (“PL”)
(
Q −

√
R
)
/{2(θ − 1)} θ ∈ (0,∞) −

Frank (“F”) −θ−1 log
{
1+ (exp

{
−θp1

}
− 1)(exp

{
−θp2

}
− 1)/(exp {−θ} − 1)

}
θ ∈ R\{0} 1− 4

θ [1− D1(θ)]

Gaussian (“N”) �2

(
�−1(p1),�

−1(p2); θ
)

θ ∈ [− 1, 1] 2
π
arcsin(θ)

Student-t (“T”) t2,ζ

(
t−1
ζ (p1), t

−1
ζ (p2); ζ , θ

)
θ ∈ [− 1, 1] 2

π
arcsin(θ)
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variable is the second requirement. However, the absence of this instrument permits to write down copula 
expressions with recursive structures e.g.64,80–83.

Additive predictor. This section provides a general explanation of the additive predictors used to model 
the endogenous and the outcome variables. More details can be found, for example, in Marra et al.63 and Dettoni 
et al.84. The key benefits of employing additive predictors are that they can handle a variety of covariate effects 
and that they may be calculated flexibly from the data without impossing parametric a priori forms. Let us con-
sider a generic predictor ηνi ∈ R , and the overall covariate vector xνi . The additive predictors for the endogenous 
and the outcome equations can be defined generically as

where ϕν0 ∈ R is an overall intercept, xνkν i denotes the kν th sub-vector of the complete vector xνi (which contains, 
for instance, binary, categorical and continuous variables) and the Kν functions fνkν (xνkν i) represent generic 
effects which are chosen according to the type of covariate(s) considered. Each fνkν (xνkν i) can be represented 
as a linear combination of Jνkν basis functions Bνkν jνkν

(xνkν i) and regression coefficients ϕνkν jνkν ∈ R , that is

As an example of basis functions, consider the B-spline basis. Assume that J denotes the number 
of B-spline bases. To define a J parameter B-spline basis, we first introduce a sequence of J + D + 1 knots 
x∗ν,1, x

∗
ν,2, . . . , x

∗
ν,J+D+1 where the spline function is evaluated within the interval [x∗ν,D+2, x

∗
ν,J ] . The B-spline basis 

is strictly local as each basis function is non-zero over the intervals between D + 1 adjacent knots, where D + 1 
denotes the order of the basis. Therefore, B-spline basis functions are defined recursively as

and BD−1
ν,j (xν) = 1 if x∗ν,j ≤ xν < x∗ν,J+1 and 0 otherwise. Other formulations of basis functions are also feasible 

in (9) e.g.85,86.
Therefore, Eq. (8) can be written generically as

where Bνkν (xνkν i) = {Bνkν1(xνkν i), . . . ,Bνkν Jνkν
(xνkν i)}

⊤ and ϕνkν = (ϕνkν1, . . . ,ϕνkν Jνkν )
⊤ . Furthermore, if 

B
⊤
νiγ ν =

∑Kν

kν=1 Bνkν (xνkν i)
⊤ϕνkν , ϕν = (ϕν0,ϕν1, . . . ,ϕνKν

)⊤ and Bνi = {1,Bν1(xν1i)
⊤, . . . ,BνKν (xνKν i)

⊤}⊤ , 
we obtain

Each ϕνkν has an associated quadratic penalty �νkνϕT

νkν
Bνkνϕνkν that enables one to place particular properties 

on the kν th function, such as smoothness. Note that each matrix Bνkν only depends on the choice of the basis 
functions. Smoothing parameter �νkν ∈ [0,∞) controls the trade-off between fit and smoothness, and as such it 
determines the shape of the related estimated smooth function. The overall penalty can be defined as ϕT

νDνϕν , 
where Dν = diag(0, �ν1Dν1, . . . , �νKνDνKν) . Smooth functions are typically subject to centering (identifiability) 
constraints (see  Wood86 for more details). Several formulations of basis functions and penalty terms are feasible 
depending on the types of covariate effects considered e.g.84,87.

Estimation, inferential specifics and sample average treatment effect (SATE). Following, 
Radice et al.65, since y1i and y2i are binary variables taking values in {0, 1} , we have four configurations of out-
comes: F(y11i , y

1
2i) = P(y1i = 1, y2i = 1) , F(y11i , y

0
2i) = P(y1i = 1, y2i = 0) , F(y01i , y

1
2i) = P(y1i = 0, y2i = 1) and 

F(y01i , y
0
2i) = P(y1i = 0, y2i = 0) . Let us define the complete vectors of parameters as ϕ = (ϕ1,ϕ2, θ) . Then the 

log-likelihood function for the copula model can be expressed as

where F(y11i , y
1
2i) = C(F1(y

1
1i), F2(y

1
2i), θ) , F(y

1
1i , y

0
2i) = F1(y

1
1i)− C(F1(y

1
1i), F2(y

1
2i), θ) , F(y

0
1i , y

1
2i) = F1(y

1
2i)

−C(F1(y
1
1i), F2(y

1
2i), θ) and F(y01i , y

0
2i) = 1− [F1(y

1
1i)+ F2(y

1
2i)− C(F1(y

1
1i), F2(y

1
2i), θ)].

The modeling of binary data can be done with a great deal of flexibility thanks to our model specification. 
If an unpenalised estimation approach is employed to estimate ϕ = (γ ,ϕ1,ϕ2, θ) , then the resulting smooth 

(8)ηνi(xνi) = ϕν0 +

Kν∑

kν=1

fνkν (xνkν i), i = 1, . . . , n,

(9)fνkν (xνkν i) =

Jνkν∑

jνkν=1

ϕνkν jνkν Bνkν jνkν
(xνkν i).

B
D
ν,j(xν) =

xν − x∗ν,j

x∗ν,j+D+1 − x∗ν,j
B
D−1
ν,j (xν)+

x∗ν,j+D+2 − x∗ν

x∗ν,j+D+2 − x∗ν,j+1

B
D−1
ν,j+1(xν)

ηνi = ϕν0 +

Kν∑

kν=1

Bνkν (xνkν i)
⊤ϕνkν ,

(10)ηνi = B
⊤
νiϕν .

(11)
ℓ(ϕ) =

n∑

i=1

[y1iy2i log F(y
1
1i , y

1
2i)+ y1i(1− y2i) log F(y

1
1i , y

0
2i)

+ y2i(1− y1i) log F(y
0
1i , y

1
2i)+ (1− y1i)(1− y2i) log F(y

0
1i , y

0
2i)],
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function estimates are likely to be unduly wiggly e.g.86. Therefore, to prevent over-fitting, the following functions 
are maximized

where ℓp is the penalized log-likelihood, � = diag(D1,D2, 1) , and D1 and D2 are overall penalties which contain 
�1 and �2 defined as �ν = (�ν1, . . . , �νKν )

T for ν = 1, 2 . The smoothing parameter vectors can be collected in the 
overall vector � = (�T1 , �

T
2 )

T . A robust and efficient trust region approach with integrated automatic multiple 
smoothing parameter selection is used to estimate the model parameters and smoothing coefficients. In this 
sense, the number of B-spline basis and knots are chosen automatically by minimizing the AIC criterion e.g.63,64.

Confidence intervals for any linear and nonlinear function of ϕ are obtained from a Bayesian point of view, 
by recalling that the penalty term associated with the smooth functions of covariates represents the prior belief 
that these functions are likely to be smoother rather than wiggly. This implies setting an improper multivariate 
Normal prior on ϕ , which then leads to the posterior distribution ϕ ∼ N (ϕ̂, [Hp(ϕ̂)]

-1) , where Hp(ϕ̂)] is the 
model’s penalized Hessian. The rationale for using this result post-estimation is provided, for instance, in Marra 
and  Radice88. They also show that using the above posterior distribution yields confidence intervals with better 
frequentist properties than those obtained using a frequentist approach itself. Other advantages of using the 
Bayesian result are that the distribution of nonlinear functions of ϕ can easily be obtained by posterior simula-
tion and that the resulting distribution need not be symmetric.

On the other hand, the effect of the treatment y1i on the probability that y2i = 1 is typically of primary interest. 
The purpose is to analyze how the endogenous variable (treatment) changes the expected outcome. As a result, 
the treatment effect is given by the difference between the expected outcome with treatment and the expected 
outcome without treatment. Different measures of treatment effect have been proposed in the literature. Here, we 
focus on the average treatment effect in the specific sample at hand (SATE), rather than that in the  population89. 
In our case, following Radice et al.65, this can be defined as

where B = (B1i ,B2i , y1i) and Bνi = {1,Bν1(xν1i)
⊤, . . . ,BνKν (xνKν i)

⊤}⊤ . Finally, SATE(ϕ,B) can be estimated 
using SATE(ϕ̂,B) , whereas an interval for it can be obtained by employing Bayesian posterior simulation e.g.63,64.

Data analysis
Data and variables. The Medical Expenditure Panel Survey provided the data for this research (MEPS). 
Furthermore, the Agency for Healthcare Research and Quality, a division of the US Department of Health and 
Human Services, gathered and published them. The MEPS provides nationally-representative, micro-level infor-
mation on medical spending, insurance status, and health conditions. In particular, we focus on the 2012 wave 
of the survey, where individuals aged between 18 and 64 years old were considered. Obesity is measured by the 
body mass index (BMI), defined as weight in kilograms divided by height in meters squared (kg/m2) . A per-
son with a body mass index (BMI) above 30 is considered obese (WHO). Individuals who lacked all necessary 
socioeconomic and demographic control characteristics were not included in the sample (e.g., missing values 
for education or income). After exclusions, the final dataset contains 18,592  observations65. Table 2 summarizes 
the variables used in the analysis.

(12)ℓp(ϕ) = ℓ(ϕ)−
1

2
ϕT�ϕ,

(13)SATE(ϕ,B) =
1

n

n∑

i=1

[P(y2i = 1|y1i = 1)− P(y2i = 1|y1i = 0)],

Table 2.  Variables and results of the descriptive statistics. Data were obtained from the Medical Expenditure 
Panel Survey (MEPS) for USA. N = 18,592.

Variables and Descriptive Statistics

 Variable Definition Mean Std. Dev.

BMI = Body mass index 27.861 6.195

Obesity =1 if BMI > 30 0.295 0.456

Health =1 Excellent, =2 very good, =3 good, =4 fair, =5 poor – –

Diabetes =1 Diabetic 0.077 0.267

Hypertension =1 Hypertension 0.249 0.432

Hyperlipidemia =1 Hyperlipidemic 0.241 0.428

Limitation =1 Health limits physical activity 0.080 0.271

Private =1 Private health insurance 0.635 0.481

Age = Age in years 39.891 13.459

Gender =1 Male 0.470 0.500

Race =1 White, =2 Black, =3 Native American, =4 others – –

Education = Years of education 12.664 2.991

Income = Income 62,498.98 53,732.80

Region =1 Northeast, =2 mid-west, =3 south, =4 west – –
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Preliminary evidence. The means and standard deviations of the variables used in the empirical analysis 
are provided in Table 2. The existence of chronic diseases in our sample is of 24.9% with hypertension, 24.1% 
with hyperlipidemia and 7.7% with diabetes. 29.5% of adults are obese and the overall mean body mass index, 
BMI, is around 27.861 kg/m2 (S.D. = 6.195). Certainly, the research backs up a growing body of evidence that 
certain populations are more vulnerable to certain diseases. In practice, people with hypertension account for 
only 5.6% of those under 60, while they are substantially more prevalent among those over 60. (57.76 %). Despite 
the fact that there were no statistical differences in hypertension between men and women, males (25.86%) are 
more likely than women to experience it (23.99% ). It is also worth mentioning that the prevalence of hyperten-
sion was higher among individuals who had no formal education or just completed primary school (32.25 % and 
35.75%, respectively) than among those who completed secondary or high school (24.95% and 24.31%, respec-
tively). When it comes to income, there are no significant differences in the proportion of people with hyperten-
sion between income quartiles, a phenomenon that also happens when the difference is measured by geographic 
area. We should also mention that black people (34%) and Native Americans (31.89%) have a greater prevalence 
of hypertension than whites (22.93%) and even other races (19.82%). The two other chronic conditions present a 
similar scenario. Hyperlipidemia is more prevalent in men (26.08%) than in women (22.40%). It is also prevalent 
in the senior population segment (55.65%). Surprisingly, those with a high or secondary educational level have 
a somewhat lower frequency of hyperlipidemia than those with a primary or zero educational level. Despite we 
may tend to think that quartiles with higher income have a slightly higher propensity to contract hyperlipidemia 
than those with lower income.

Similarly, little difference is seen in the portion of people with the disease when analyzed by race and region. 
As for diabetes, research shows that it increases with age, low educational level (primary or without education), 
and slightly for low-income-level (first and second quartile). Diabetes affects only 0.92 percent of people under 
the age of 30, whereas it affects 21.93 percent of people over the age of 60. Surprisingly, the diabetes rates for 
men and women are nearly the same.

Obesity is linked to specific variables such as gender, age, and income, among others. Obesity is more common 
in women (31.16%) than it is in men (27.61%). Obesity rates climb with age: 20.15% of those under 30 are obese, 
compared to 34.04% over 60. Obesity has a negative relationship with income, according to microeconomic 
data. Obesity affects more than 33% of individuals in the lowest income bracket, compared to only 23.69% of 
those in the highest income bracket. Education level is thought to influence body mass, and our findings appear 
to support this theory. Obesity is found to be negatively associated to education in our sample. Obesity affects 
26.78% of those who have completed higher education, 31.55% of those who have completed secondary school, 
and 34.03% of those who have completed primary education. Also, 19.35% of the illiterate people are obese. Race 
is observed to play a role in obesity, as black and Native American people have a greater propensity to be obese 
(38.85% and 37.3% respectively) than whites or other races (29.04% and 11.96% respectively). Finally, in terms 
of geographic region, no great differences are observed in the propensity to obesity.

Results. In this section several copula models with endogenous treatment are estimated. In particular, 54 
models were fitted. Table 3 shows the best five models based on their Akaike information criterion (AIC) and 
Bayesian information criterion (BIC). First of all, the sampling average treatment effect (SATE) of obesity on 
hypertension, hyperlipidemia and diabetes is shown. Next, the measure of dependence is analyzed. Finally, the 
parametric and non-parametric effects are explained.

Estimated SATE. Tables 4, 5 and 6 show the results of utilizing the copula models outlined in Section “Semipa-
rametric recursive bivariate copula model” to estimate the probability of an individual being obese as well as the 
prevalence of hypertension, hyperlipidemia, and diabetes. Tables are presented pairwise according to models (3) 
and (4). Since obesity is likely to be endogenous in equation (4) and for the identification of the copula  model80, 
we use the individual’s physical limitation as instrument. We assume that this variable is redundant in that equa-
tion once obesity is considered. Besides, treatment regressions in Tables 4, 5 and 6 show that the instrument 
affects obesity once partial effects of the other variables have been considered. Therefore, this variable is a valid 
instrument for obesity.

Treatment equations in Tables 4, 5 and 6 also show that obesity had a statistically significant and positive effect 
on all chronic conditions studied, as expected. This is consistent with previous  literature37,38,47,50. Furthermore, 
it is worth noting that the coefficients indicate significant heterogeneity in the specific impact of obesity, which, 
if not taken into account it could bias the results obtained.

The estimated SATE (in %) and confidence interval (CI) for the best five fitted copula models for each chronic 
disease are reported in Table 3. The chosen models show similar point estimates with overlapping CIs. Models not 
shown in the table show higher AIC / BIC support and systematically lower dependency than preferred models. 
Using the Plackett copula with probit-logit link functions combination, the estimated SATE of obesity on 
hypertension indicates that the probability of suffering hypertension increases by 35% for obese people compared 
to those who are not obese, fluctuating between 30.2% and 40.9% approximately.

The estimated SATE of obesity on hyperlipidemia indicates that the probability of suffering hyperlipidemia 
increases by 27.6% for obese people compared to those who are not obese, fluctuating between 21.9% and 35.5% 
approximately, the same copula and prior link functions combination were utilized for this. Regarding the SATE 
of obesity on diabetes, we use the Gaussian copula with logit-probit link functions combination, which 
indicates that the probability of suffering diabetes increases by 11% for obese people compared to those who 
are not obese, fluctuating between 6.7% and 15.6% approximately. These results can be compared with those 
obtained, for example, by Costa-Font and  Gil37, who also found that obesity increases the probability of diabetes, 
hypertension and high cholesterol in Spain (43%, 47% and 20% respectively). Differences in the sizes of these 
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effects between the two works can be explained, since in our approach different copulas functions were applied to 
model the joint distributions of obesity and each of the chronic diseases analyzed. Furthermore, in our research, 
the effects of continuous variables were estimated in a non-parametric form. This is crucial to properly model 
the complex effects of variables such as education, age and income as they embody productivity and life-cycle 
effects that are likely to influence obesity and each the of the diseases non-linearly. If these relationships are 
not properly modeled then the effect of obesity on the probability of suffering a chronic disease (hypertension, 
hyperlipidemia and diabetes) may be  biased65.

We note that the SATE results do not differ greatly between the same copula with different link functions 
combination, but it does differ between the different copulas, hence, as explained by Marra et al.64 choosing the 
right copula model can have an impact.

Parametric components. With endogeneity accounted for, the gender-specific effects are significant for either 
chronic diseases (Tables 4, 5 and 6). The difference can be seen in the lower probability of men being obese 
compared to women, yet a higher probability of acquiring any of the chronic diseases studied. In terms of the 
health levels indicated by the health variable, we find that those who have a poorer health status are much more 
likely to develop a chronic disease than people who have a better health status. As for race, there is a significant 
difference between the probability of being obese and also having hypertension or diabetes for black people 
and native american compared to white people. While this difference is not observed in the case of contracting 
hyperlipidemia, where only a significant difference is shown for black people compared to white people. Other 
races show significant and negative differences with respect to white people in each of the chosen copula models.

In the treatment equations (Tables 4, 5 and 6) we show the effect of the geographical area in which the person 
is located on the propensity to obesity. We note that, controlling for the north-east zone, there are significant 
and positive differences with those who live in the mid-west and south, which suggests that they are more likely 
to be obese than those who live in the north-est zone. While there is no significant difference with those located 
in the western zone.

In addition, we check the influence of having private health insurance on the likelihood of acquiring a chronic 
condition. According to the results, we note that there is a significant and positive difference in the probability of 
having hypertension and hyperlipidemia for those who have private health insurance. This suggests that people 
who contract a health insurance are more concerned about their health condition, effect that is not significant 
for the probability of having diabetes.

Non‑parametric components. When using the different preferred models on the MEPS data, the smooth func-
tion estimates (age, education and income) for the treatment and outcome equations (and related intervals) are 
shown in Fig. 1. The estimated smooth functions obtained using the other copula models were similar.

Table 3.  Estimated SATE (in %), Kendall’s τ , AIC and BIC obtained using different copula models for 
the 2012 MEPS data. 95% confidence intervals for the SATE have been obtained using the method detailed 
in Section “Semiparametric recursive bivariate copula model”. For the link functions, the probit link is 
represented by p, while for the logit and cloglog links we use l and c respectively. For example, (l-p) 
refers to a logit link for the outcome equation (l) and a probit link for the treatment equation (p).

Estimated SATE

 Copula (links) τ̂  (95% CIs) ŜATE (95% CIs) AIC BIC

Hypertension

Plackett (p-l) - 0.286(- 0.358,- 0.197) 35.0 (30.2,40.9) 37063.95 37385.13

Plackett (p-p) - 0.288(- 0.382,- 0.216) 35.1 (28.4,41.0) 37064.19 37374.31

Frank (p-l) - 0.263(- 0.339,- 0.200) 34.1 (28.5,39.3) 37065.46 37388.17

Frank (p-p) - 0.263(- 0.336,- 0.178) 34.1 (27.4,40.6) 37065.77 37377.96

Student (p-p) - 0.324(- 0.396,- 0.236) 35.9 (29.9,41.0) 37068.71 37379.42

Hyperlipidemia

Plackett (p-l) - 0.282(- 0.381,- 0.176) 27.6 (21.9,35.5) 37629.45 37973.19

Plackett (p-p) - 0.281(- 0.366,- 0.195) 27.6 (19.9,34.4) 37629.75 37968.90

Frank (p-l) - 0.247(- 0.330,- 0.157) 25.9 (19.2,32.1) 37631.58 37974.95

Frank (p-p) - 0.247(- 0.345,- 0.149) 25.9 (20.3,32.6) 37631.86 37970.80

Student (p-l) - 0.331(- 0.419,- 0.212) 29.2 (23.1,34.1) 37633.39 37977.53

Diabetes

Copula (links) τ̂  (95% CIs) ŜATE (95% CIs) AIC BIC

Gaussian (l-p) - 0.123(- 0.220,- 0.016) 11.0 (6.7,15.6) 29145.20 29465.59

Gaussian (l-l) - 0.121(- 0.228,- 0.038) 10.9 (6.9,15.7) 29145.29 29490.05

Frank (l-l) - 0.157(- 0.291,- 0.020) 12.3 (6.5,19.2) 29145.92 29490.77

Gaussian (p-p) - 0.228(- 0.362,- 0.097) 16.1 (10.0,24.9) 29149.05 29436.31

Gaussian (p-l) - 0.225(- 0.354,- 0.027) 15.9 (8.7,24.3) 29149.95 29445.81
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The effects of age, education and income in the outcome equations show different degrees of non-linearity 
when comparing across different chronic diseases. This is also shown by the results of the treatment equations but 
at a higher degree of similarity, which was expected (aside from a few exceptions, such as the effect of education 
on the probability of having hypertension and the effect of income on the probability of having hyperlipidemia 
and diabetes).

Specifically, in Panel A (Fig. 1), we note that the effect of age on obesity, as a treatment for each of the dis-
eases, is significant and positive between approximately 18 and 35 years of age. After age 35, it has an effect that 
tends to be constant until about age 55, with a slight decrease thereafter (for reasons of ease of explanation, one 
obesity regression (hypertension) is shown in Fig. 1 (Panel A), however, the non-parametric effect of obesity on 
hypertension is very similar to those for hyperlipidemia and diabetes). Regarding the effect of age on hyperten-
sion (Panel B), an increase in the propensity to have this disease is observed, which tends to be linear in the 
observed range. On hyperlipidemia (Panel C), a positive effect of age is observed in the observed range, showing 
a slight decrease in its growth from 35 years onwards. Finally, we see that the effect of age on the propensity to 
have diabetes (Panel D) is positive for the different age levels, and a more diffuse effect is shown between 18 and 
25 years of age than in the following years.

The effect of education on obesity (Panel A), as a treatment for different diseases, is significant, approximately, 
from 12 years onwards, where there is a decrease in the probability of being obese when at least the secondary 

Table 4.  Estimated coefficients and standard errors of the parametric and non-parametric components of the 
Plackett copula (PL) for the treatment and outcome equations for hypertension. 95% for confidence intervals 
for τ have been obtained using the methods described in Section “Semiparametric recursive bivariate copula 
model”. The models were fitted using the functions gamlss() and gjrm()in GJRM by employing the 
“probit-logit” link functions combination. Furthermore, EDF and Ref.DF are the effective degrees of 
freedom and reference degrees of freedom of the non-parametric functions.

Hypertension

Treatment equation

 Variable Estimate Standard error Z-value P-value

intercept - 1.070 0.048 - 22.345 0.000

∗∗∗

region2 0.200 0.057 3.531 0.000

∗∗∗

region3 0.207 0.050 4.136 0.000

∗∗∗

region4 0.053 0.055 0.958 0.338

gender1 - 0.127 0.034 - 3.791 0.004

∗∗∗

race2 0.377 0.042 8.904 0.000

∗∗∗

race3 0.289 0.157 1.842 0.066

∗

race4 - 0.958 0.080 - 11.958 0.000

∗∗∗

limitation 0.742 0.057 13.095 0.000

∗∗∗

 Variable EDF Ref.DF Chi-square P-value

s(age) 8.129 8.791 343.98 0.000

∗∗∗

s(education) 5.437 6.499 76.60 0.000

∗∗∗

s(income) 2.133 2.724 28.53 0.000

∗∗∗

Outcome equation

 Variable Estimate Standard error Z-value P-value

intercept - 1.782 0.035 - 50.484 0.000

∗∗∗

obesity 1.248 0.096 12.971 0.000

∗∗∗

health2 0.327 0.032 10.285 0.000

∗∗∗

health3 0.538 0.033 16.234 0.000

∗∗∗

health4 0.877 0.044 20.023 0.000

∗∗∗

health5 1.091 0.066 16.652 0.000

∗∗∗

private1 0.090 0.026 3.461 0.000

∗∗∗

gender1 0.166 0.022 7.527 0.001

∗∗∗

race2 0.259 0.031 8.259 0.000

∗∗∗

race3 0.189 0.105 1.802 0.072

∗

race4 0.143 0.043 3.333 0.000

∗∗∗

 Variable EDF Ref.DF Chi- square P-value

s(age) 2.266 2.842 945.319 0.000

∗∗∗

s(education) 1.000 1.000 4.211 0.040

∗∗

s(income) 1.051 1.101 1.547 0.219

 Kendall tau Estimate Confidence interval

τ - 0.286 (- 0.358,- 0.197)
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level of education is completed. Regarding its direct effect on the propensity to develop chronic diseases, we 
note that it is linear and significant on hypertension (Panel B), despite showing a low impact at the different 
levels observed. Regarding hyperlipidemia (Panel C), we see that its effect is non-linear and significant in the 
section of 12 years of education or more, where, counterintuitively, we note that the probability of having obesity 
increases after finishing secondary education. Finally, it is observed that education has a significant effect on 
diabetes (Panel D) and that it tends to be linear, where people who have more academic training are less likely 
to contract this disease.

When we look at the effect of income on obesity (Panel A) as a treatment for chronic diseases, we see that 
it is both significant and negative at different income levels, implying that people with a higher income have 
more opportunities to improve their nutritional quality and, as a result, have a lower risk of being obese. In the 
estimation by confidence intervals, the effect of income on hypertension (Panel B) and diabetes (Panel D) is 
not significant, as it comprises nearly zero for all of its reported values. Effects that contrast from those shown 
with hyperlipidemia (Panel C), in which a higher income level is associated with a lower risk of developing the 
condition, which is significant and linear in its observed range.

These conclusions are confirmed for the p-values reported in the Tables 4, 5 and 6. As for the mentioned 
variables, the estimated effects have the expected patterns. For example, age is a significant determinant in 
both equations. The probability of being obese and suffering a chronic disease are found to increase with age.

Table 5.  Estimated coefficients and standard errors of the parametric and non-parametric components of 
the Plackett copula (PL) for the treatment and outcome equations for hyperlipidemia. The models were fitted 
using the “probit-logit” link functions combination. More details are given in Table 4.

Hyperlipidemia

Treatment equation

 Variable Estimate Standard error Z-value P-value

intercept - 1.070 0.048 - 22.389 0.000 ∗∗∗

region2 0.197 0.057 3.479 0.000 ∗∗∗

region3 0.201 0.050 4.010 0.000 ∗∗∗

region4 0.055 0.055 0.994 0.320

gender1 - 0.122 0.034 - 3.637 0.000 ∗∗∗

race2 0.374 0.042 8.820 0.000 ∗∗∗

race3 0.293 0.157 1.874 0.061 ∗

race4 - 0.963 0.080 - 12.019 0.000 ∗∗∗

limitation 0.746 0.057 13.162 0.000 ∗∗∗

 Variable EDF Ref.DF Chi-square P-value

s(age) 7.950 8.704 341.35 0.000 ∗∗∗

s(education) 5.561 6.623 73.61 0.000 ∗∗∗

s(income) 2.038 2.602 29.96 0.000 ∗∗∗

Outcome equation

 Variable Estimate Standard error Z-value P-value

intercept - 1.641 0.036 - 46.144 0.000 ∗∗∗

obesity 0.995 0.116 8.541 0.000 ∗∗∗

health2 0.273 0.031 8.861 0.000 ∗∗∗

health3 0.431 0.033 13.247 0.000 ∗∗∗

health4 0.755 0.044 17.019 0.000 ∗∗∗

health5 0.804 0.064 12.498 0.000 ∗∗∗

private1 0.157 0.026 5.970 0.000 ∗∗∗

gender1 0.180 0.022 8.283 0.000 ∗∗∗

race2 - 0.148 0.030 - 4.920 0.000 ∗∗∗

race3 0.059 0.108 0.550 0.582

race4 0.170 0.041 4.096 0.000 ∗∗∗

 Variable EDF Ref.DF Chi-square P-value

s(age) 3.539 4.402 924.31 0.000 ∗∗∗

s(education) 2.809 3.511 28.88 0.000 ∗∗

s(income) 1.000 1.000 11.34 0.000 ∗∗∗

 Kendall tau Estimate Confidence Interval

τ - 0.282 (- 0.381,- 0.176)
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The likelihood of being obese, as well as the likelihood of having a chronic disease, appear to be closely 
associated with education. Education is likely to be correlated with an improvement in socioeconomic status 
and therefore people can lead a more permissive life in terms of their health. Regarding the effect of education 
on the probability of having a chronic disease, we note that it is significant in each of them, despite not showing 
a non-linear effect on hypertension.

We note that income has a significant effect on obesity. This suggests that a better financial situation can help 
a person not being obese. This is in contrast to its influence on two of the three chronic diseases under investiga-
tion, where it is found that while income has no bearing on the likelihood of having hypertension or diabetes, 
it does have a bearing on the likelihood of having hyperlipidemia, observing that it increases the probability 
of suffering hyperlipidemia at the higher part of its scale. This suggests that income can be a good predictor to 
explain a decrease in the probability of having obesity, where a better level of income could improve the way 
people eat, while the probability of having a chronic disease is not seen directly affected by income level, except 
for hyperlipidemia only when income is high, where other factors could be playing a role as well.

Measure of dependence (Kendall’s τ). In Table  3, where results of different copula models are presented for 
hypertension, hyperlipidemia and diabetes, all of the Kendall’s τ are significant and negative, meaning that the 
error term of the outcome equation (3) is negatively associated with the error term of the treatment equation 
(4). This negative association is consistent with related findings in Costa-Font and  Gil37. Nevertheless, it might 

Table 6.  Estimated coefficients and standard errors of the parametric and non-parametric components of the 
Gaussian copula (N) for the treatment and outcome equations for diabetes. The models were fitted using the 
functions gamlss() and gjrm()in GJRM by employing the “logit-probit” link functions combination. 
More details are given in Table 4.

Diabetes

Treatment equation

 Variable Estimate Standard error Z-value P-value

intercept - 0.666 0.029 - 23.203 0.000

∗∗∗

region2 0.133 0.034 3.881 0.000

∗∗∗

region3 0.122 0.031 4.015 0.000

∗∗∗

region4 0.051 0.033 1.553 0.120

gender1 - 0.065 0.020 - 3.233 0.001

∗∗∗

race2 0.231 0.026 8.952 0.000

∗∗∗

race3 0.176 0.096 1.830 0.067

∗

race4 - 0.541 0.043 - 12.534 0.000

∗∗∗

limitation 0.456 0.036 12.742 0.000

∗∗∗

 Variable EDF Ref.DF Chi-square P-value

s(age) 5.369 6.498 359.25 0.000

∗∗∗

s(education) 4.636 5.643 72.70 0.000

∗∗∗

s(income) 1.948 2.483 33.64 0.000

∗∗∗

Outcome equation

 Variable Estimate Standard error Z-value P-value

intercept - 4.941 0.135 - 36.558 0.000

∗∗∗

obesity 1.569 0.276 5.680 0.000

∗∗∗

health2 0.620 0.130 4.781 0.000

∗∗∗

health3 1.524 0.124 12.250 0.000

∗∗∗

health4 2.037 0.136 15.033 0.000

∗∗∗

health5 2.346 0.162 14.516 0.000

∗∗∗

private1 0.084 0.070 1.199 0.230

gender1 0.138 0.060 2.294 0.022

∗∗

race2 0.284 0.078 3.661 0.000

∗∗∗

race3 0.708 0.236 2.997 0.003

∗∗∗

race4 0.470 0.122 3.866 0.000

∗∗∗

 Variable EDF Ref.DF Chi-square P-value

s(age) 5.212 6.294 436.035 0.000

∗∗∗

s(education) 1.749 2.191 15.425 0.000

∗∗∗

s(income) 1.000 1.000 0.753 0.386

 Kendall tau Estimate Confidence interval

τ - 0.123 (- 0.220,- 0.016)
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also be expected that those unobserved variables that are captured in the error term of the model for obesity (4) 
are positively associated with the ones of the model for each chronic disease in model (3). A possible explana-
tion for the negative sign is the existence of measurement error in variables. The baseline model assumes that 
the BMI captures obesity without error. If we assume that the BMI measures obesity with error, there would be 
a source of negative correlation between the errors and thus a negative τ . For instance, if an individual attends 
the gym frequently and builds muscles, his/her BMI would be above the healthy threshold so obesity would 
be overestimated for this person. At the same time, people who frequently exercise have a lower probability of 
developing a disease. Therefore, for these individuals, the probability of the -measured- obesity would be high, 
and the probability of suffering other diseases is lower, thus generating a negative correlation between the errors 
in the treatment and outcome equations. Now, consider the case of an individual whose BMI is too low because 
he/she has an eating disorder. This individual would be classified as not obese according to the rule assumed by 
the literature and this paper regarding BMI. However, this individual would have a high probability of acquir-

Figure 1.  Smooth function estimates and associated 95 point-wise confidence intervals for obesity and all 
chronic diseases analyzed after applying the gjrm() function in GJRM to the MEPS data. The graph of the 
treatment equation (Obesity) is showed in Panel (A), while those for the outcome equations: Hypertension, 
Hyperlipidemia and Diabetes are showed in Panels (B), (C) and (D) respectively.
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ing one of the diseases studied in this document, therefore inducing -again- a negative relationship between the 
errors in the outcome and treatment equations.

Therefore, in order to inspect the resulting negative association, several approaches were taken to study the 
robustness of the estimated negative sign, which are analyzed in the following discussion.

The treatment is obesity, a binary variable that is 1 when the body mass index (BMI) is 30 or greater and 0 
otherwise. The estimated negative association between error terms could be a consequence of the definition of 
the scale of the treatment variable. Therefore, we explored not only alternative definitions of the binary response 
variable for the treatment equation (4) but also different subsets of data to obtain evidence for or against the 
negative sign of τ.

Regarding the approach of using several alternative definitions, we focused our attention on thresholds cho-
sen according to the limits of BMI intervals established by WHO that define obesity class I, II and III, middle 
points of obesity class I and II, and a BMI of 42.45 as a particular point of class obesity III. For each one of these 
thresholds, a new version of the treatment variable Obesity was constructed and their corresponding set of 
models (3) and (4) for each chronic disease were fitted. For all of these optional settings, the Kendall’s τ was 
negative again, observing evidence for its originally found negative sign.

Keeping BMI=30 as the threshold to define obesity, the other approach that was analysed was the one of 
removing from the data those observations at an extreme part of the scale of BMI. Excluding observations at 
the lower part of the scale of BMI (BMI<18.5) is of special interest because those people are considered under-
weight, and therefore an increase in their BMI might affect their health status positively, not negatively as it is 
for people who is at the higher part of the scale. Therefore, we consider only those observations for which an 
increase in BMI should affect their health status negatively. Consistently with previous results, the outcomes of 
this subset show a negative Kendall’s τ too. We also used the same approach with some other BMI values, fol-
lowing the same criteria of using limit values and middle points of different intervals that define classes of BMI, 
particularly those of normal weight and overweight, for which we found negative Kendall’s τ again for every 
chronic disease. Similarly, we explored exclusions of observations in the higher part of the BMI scale, particularly 
for obesity class II and III, but without different results in terms of the sign of Kendall’s τ . Therefore, not only 
alternative definitions of obesity but also different subsets of data provide results that do not shift the negative 
sign of Kendall’s τ into positive.

Conclusion
This paper aimed at addressing the effect of obesity on the incidence of diabetes, hypertension and hyperlipidemia 
in USA using a health production theoretical framework along with a bivariate flexible semi-parametric copula 
model that controls for endogeneity. Unlike traditional recursive probit models, the flexible copula model allows 
us for different joint distribution for the endogenous and outcome variables along with non-parametric estima-
tion of the continuous control variables. Our findings imply that there is positive and considerable evidence 
of the effect of obesity on the prevalence of each chronic disease evaluated in this study after using the copula 
model. In particular, after controlling for endogeneity, the estimated sampling average treatment effect (SATE) 
for hypertension, hyperlipidemia and diabetes were, respectively, 35%, 28% and 11%. This shows that lowering 
obesity rates could result in significant reductions in the morbidity and mortality associated with these diseases, 
resulting in cost savings for the health system and the country’s human capital.

When it comes to obesity, our study encountered significant differences in sociodemographic terms. Regard-
ing gender, obesity was more prevalent in women, therefore, public policies should also be gender oriented if 
countries want to win this battle against the burden of this disease. Age is positively related with obesity. Age 
sensitive measures and campaigns should be undertaken to encourage healthy habits in population. These two 
relevant results are in line with previous research. Now, our results suggest that income is negatively associated 
with obesity which contradicts other investigations. This finding is interesting since there could be a trend in 
people with higher incomes of allocating more resources on healthy food which can be prohibitive for people 
with lower incomes who are constantly encouraged to opt for fast and unhealthy food due to its availability 
and cost-effectiveness. Governments in the world should reach agreements and more flexibility to provide the 
markets with fresh fruits, vegetable and other natural products at a more convenient price, in order to reduce 
obesity rates in the population. There are also genetic factors associated with obesity which is evident in ethnics 
groups such as Afro-Americans and Native Americans. Awareness should be also risen as part of focalized pub-
lic policies. The results provided in our research reported a statistically significant and positive effect of obesity 
on the prevalence of the three diseases in this study (diabetes, hypertension, and hyperlipidemia). Apart from 
confirming and strengthening previous research, given the amount of economic resources spent worldwide and 
its impact on the entire productive world, these findings should encourage better public strategies in dealing 
with obesity as an epidemic and a serious health concern. Countries that are able to contain this epidemic can 
reallocate finances to improve the quality of life and life expectancy of their citizens.

Data availability
The dataset analysed during the current study is freely available directly using the function data(meps), after 
loading the package GJRM in R (see Marra and  Radice76).
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